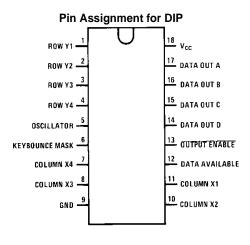
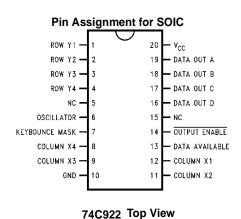


74C922 16-Key Encoder 74C923 20-Key Encoder

General Description

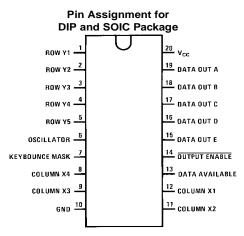

The 74C922 and 74C923 CMOS key encoders provide all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have on-chip pull-up devices which permit switches with up to 50 k Ω on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal debounce period; this two-key roll-over is provided between any two switches.

An internal register remembers the last key pressed even after the key is released. The 3-STATE outputs provide for easy expansion and bus operation and are LPTTL compatible.


Features

- 50 k Ω maximum switch on resistance
- On or off chip clock
- On-chip row pull-up devices
- 2 key roll-over
- Keybounce elimination with single capacitor
- Last key register at outputs
- 3-STATE output LPTTL compatible
- Wide supply range: 3V to 15V
- Low power consumption

Connection Diagrams


94C922 Top View

2018 AUG

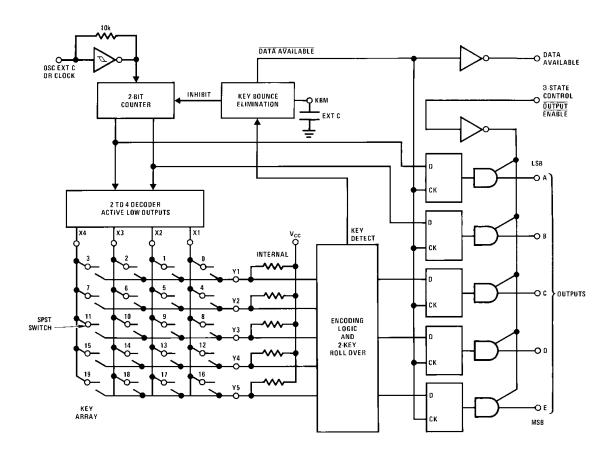
Connection Diagrams (Continued)

74C923 Top View

Truth Tables

(Pins 0 through 11)

	Switch Position		1	2	3	4	5	6	7	8	9	10	11
P			Y1,X2	Y1,X3	Y1,X4	Y2,X1	Y2,X2	Y2,X3	Y2,X4	Y3,X1	Y3,X2	Y3,X3	Y3,X4
D													
Α	Α	0	1	0	1	0	1	0	1	0	1	0	1
Т	В	0	0	1	1	0	0	1	1	0	0	1	1
Α	С	0	0	0	0	1	1	1	1	0	0	0	0
0	D	0	0	0	0	0	0	0	0	1	1	1	1
U	E (Note 1)	0	0	0	0	0	0	0	0	0	0	0	0
Т													


(Pins 12 through 19)

Switch Position		12	13	14	15	16	17	18	19
		Y4,X1	Y4,X2	Y4,X3	Y4,X4	Y5(Note 1), X1	Y5 (Note 1), X2	Y5 (Note 1), X3	Y5 (Note 1), X4
D									
Α	Α	0	1	0	1	0	1	0	1
Т	В	0	0	1	1	0	0	1	1
Α	С	1	1	1	1	0	0	0	0
0	D	1	1	1	1	0	0	0	0
U	E (Note 1)	0	0	0	0	1	1	1	1
Т									

Note 1: Omit for 74C922

Block Diagram

Absolute Maximum Ratings(Note 2)

Voltage at Any Pin $V_{CC} - 0.3V$ to $V_{CC} + 0.3V$

Operating Temperature Range

74C922, 74C923 -40° C to +85°C Storage Temperature Range -65° C to +150°C

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW Operating V_{CC} Range 3V to 15V V_{CC} 18V

Lead Temperature

(Soldering, 10 seconds) 260°C

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

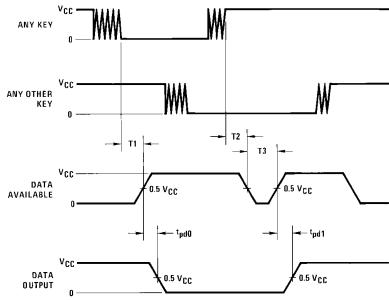
Min/Max limits apply across temperature range unless otherwise specified

Positive-Going Threshold Voltage at Osc and KBM Inputs Negative-Going Threshold Voltage at Osc and KBM Inputs Logical "1" Input Voltage, Except Osc and KBM Inputs Logical "0" Input Voltage, Except Osc and KBM Inputs	$\begin{split} &V_{CC} = 5V, \ I_{IN} \geq 0.7 \ \text{mA} \\ &V_{CC} = 10V, \ I_{IN} \geq 1.4 \ \text{mA} \\ &V_{CC} = 15V, \ I_{IN} \geq 2.1 \ \text{mA} \\ &V_{CC} = 5V, \ I_{IN} \geq 0.7 \ \text{mA} \\ &V_{CC} = 5V, \ I_{IN} \geq 0.7 \ \text{mA} \\ &V_{CC} = 10V, \ I_{IN} \geq 1.4 \ \text{mA} \\ &V_{CC} = 15V, \ I_{IN} \geq 2.1 \ \text{mA} \\ &V_{CC} = 5V \\ &V_{CC} = 10V \\ &V_{CC} = 15V \\ &V_{CC} = 5V \end{split}$	3.0 6.0 9.0 0.7 1.4 2.1 3.5 8.0 12.5	3.6 6.8 10 1.4 3.2 5 4.5	4.3 8.6 12.9 2.0 4.0 6.0	V V V V V V
at Osc and KBM Inputs Negative-Going Threshold Voltage at Osc and KBM Inputs Logical "1" Input Voltage, Except Osc and KBM Inputs Logical "0" Input Voltage,	$\begin{split} &V_{CC} = 10 V, \ I_{IN} \ge 1.4 \ mA \\ &V_{CC} = 15 V, \ I_{IN} \ge 2.1 \ mA \\ &V_{CC} = 5 V, \ I_{IN} \ge 0.7 \ mA \\ &V_{CC} = 10 V, \ I_{IN} \ge 1.4 \ mA \\ &V_{CC} = 15 V, \ I_{IN} \ge 2.1 \ mA \\ &V_{CC} = 5 V \\ &V_{CC} = 10 V \\ &V_{CC} = 15 V \end{split}$	6.0 9.0 0.7 1.4 2.1 3.5 8.0	6.8 10 1.4 3.2 5 4.5	8.6 12.9 2.0 4.0	V V V V
Negative-Going Threshold Voltage at Osc and KBM Inputs Logical "1" Input Voltage, Except Osc and KBM Inputs Logical "0" Input Voltage,	$\begin{split} &V_{CC} = 15 V, \ I_{IN} \ge 2.1 \ mA \\ &V_{CC} = 5 V, \ I_{IN} \ge 0.7 \ mA \\ &V_{CC} = 10 V, \ I_{IN} \ge 1.4 \ mA \\ &V_{CC} = 15 V, \ I_{IN} \ge 2.1 \ mA \\ \end{split}$	9.0 0.7 1.4 2.1 3.5 8.0	10 1.4 3.2 5 4.5	12.9 2.0 4.0	V V V V
at Osc and KBM Inputs Logical "1" Input Voltage, Except Osc and KBM Inputs Logical "0" Input Voltage,	$V_{CC} = 5V$, $I_{IN} \ge 0.7$ mA $V_{CC} = 10V$, $I_{IN} \ge 1.4$ mA $V_{CC} = 15V$, $I_{IN} \ge 2.1$ mA $V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	0.7 1.4 2.1 3.5 8.0	1.4 3.2 5 4.5	2.0 4.0	V V V
at Osc and KBM Inputs Logical "1" Input Voltage, Except Osc and KBM Inputs Logical "0" Input Voltage,	$V_{CC} = 10V$, $I_{IN} \ge 1.4$ mA $V_{CC} = 15V$, $I_{IN} \ge 2.1$ mA $V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	1.4 2.1 3.5 8.0	3.2 5 4.5	4.0	V V
Logical "1" Input Voltage, Except Osc and KBM Inputs Logical "0" Input Voltage,	$V_{CC} = 15V, I_{IN} \ge 2.1 \text{ mA}$ $V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	2.1 3.5 8.0	5 4.5		V
Except Osc and KBM Inputs Logical "0" Input Voltage,	$V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$	3.5 8.0	4.5	6.0	
Except Osc and KBM Inputs Logical "0" Input Voltage,	$V_{CC} = 10V$ $V_{CC} = 15V$	8.0			17
Logical "0" Input Voltage,	V _{CC} = 15V		9		V
0 1 0 7		12.5			V
0 1 0 7	V _{CC} = 5V		13.5		V
Except Osc and KBM Inputs			0.5	1.5	V
·	$V_{CC} = 10V$		1	2	V
			1.5	-	V
Row Pull-Up Current at Y1, Y2,			-2	-5	μΑ
Y3, Y4 and Y5 Inputs			-10	-20	μA
, , , , , , , , , , , , , , , , , , , ,			-22	-45	μА
Logical "1" Output Voltage		4.5			V
	**	9			V
	00 .	13.5			V
Logical "0" Output Voltage	00 1			0.5	V
3					V
	00 10 1			1.5	V
Column "ON" Resistance at			500	1400	Ω
X1, X2, X3 and X4 Outputs			300	700	Ω
Column "ON" Resistance at $V_{CC} = 5V, V_{O} = 0.5V$ 500 14 X1, X2, X3 and X4 Outputs $V_{CC} = 10V, V_{O} = 1V$ 300 70 $V_{CC} = 15V, V_{O} = 1.5V$		Ω			
Supply Current					mA
					mA
coo at o t, (enc 1 lett)	* *			2 2.5 -5 -20 -45 0.5 1 1.5 1400 700 500 1.1 1.9	mA
Logical "1" Input Current				-	μΑ
•	100 101, 1 _N 101		0.000		μ
<u>'</u>	Voc = 15V VW = 0V	-1.0	-0.005		μА
•	VCC = 10V, VIIV = 0V	1.0	0.000		μιτ
·]
	$V_{CC} = 4.75V$	V _{CC} - 1.5			V
		- 00		0.8	V
Logical "1" Output Voltage	**				
	1 9	2.4			V
Logical "0" Output Voltage	<u> </u>				-
	•			0.4	V
				0.1]
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Row Pull-Up Current at Y1, Y2, Y3, Y4 and Y5 Inputs Logical "1" Output Voltage Logical "0" Output Voltage Column "ON" Resistance at X1, X2, X3 and X4 Outputs Supply Current Osc at 0V, (one Y low) Logical "1" Input Current at Output Enable Logical "0" Input Current at Output Enable Logical "0" Input Current at Output Enable LINTERFACE Except Osc and KBM Inputs Except Osc and KBM Inputs	Row Pull-Up Current at Y1, Y2, $V_{CC} = 15V$ Row Pull-Up Current at Y1, Y2, $V_{CC} = 5V, V_{IN} = 0.1 \ V_{CC}$ Y3, Y4 and Y5 Inputs $V_{CC} = 10V$ $V_{CC} = 15V$ Logical "1" Output Voltage $V_{CC} = 15V, I_{O} = -10 \ \mu A$ $V_{CC} = 15V, I_{O} = -10 \ \mu A$ $V_{CC} = 15V, I_{O} = 10 \ \mu A$ $V_{CC} = 15V, I_{O} = 10 \ \mu A$ $V_{CC} = 15V, I_{O} = 10 \ \mu A$ $V_{CC} = 15V, I_{O} = 10 \ \mu A$ $V_{CC} = 15V, I_{O} = 10 \ \mu A$ $V_{CC} = 15V, I_{O} = 10 \ \mu A$ $V_{CC} = 15V, V_{O} = 0.5V$ $X1, X2, X3 \ and X4 \ Outputs$ $V_{CC} = 10V, V_{O} = 1V$ $V_{CC} = 15V, V_{O} = 1.5V$ Supply Current $V_{CC} = 5V$ $V_{CC} = 10V$ $V_{CC} = 15V$ $V_{CC} = 15V$ $V_{CC} = 15V$ $V_{CC} = 15V, V_{IN} = 15V$ at $Output \ Enable$ $V_{CC} = 15V, V_{IN} = 0V$ $V_{CC} = 15V, $	V _{CC} = 15V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{CC} = 15V

DC Electrical Characteristics (Continued)

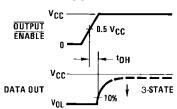
Symbol	Parameter	Conditions	Min	Тур	Max	Units
OUTPUT D	RIVE (See Family Characteristic	s Data Sheet) (Short Circuit Current)	<u> </u>	I.	l	I.
I _{SOURCE}	Output Source Current	$V_{CC} = 5V$, $V_{OUT} = 0V$,	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
I _{SOURCE}	Output Source Current	$V_{CC} = 10V$, $V_{OUT} = 0V$,	-8	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
I _{SINK}	Output Sink Current	$V_{CC} = 5V$, $V_{OUT} = V_{CC}$,	1.75	3.6		mA
	(N-Channel)	$T_A = 25^{\circ}C$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$,	8	16		mA
	(N-Channel)	$T_A = 25^{\circ}C$				

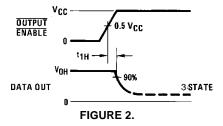
AC Electrical Characteristics (Note 3) $T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time to	C _L = 50 pF (Figure 1)				
	Logical "0" or Logical "1"	$V_{CC} = 5V$		60	150	ns
	from D.A.	V _{CC} = 10V		35	80	ns
		V _{CC} = 15V		25	60	ns
t _{0H} , t _{1H}	Propagation Delay Time from	R _L = 10k, C _L = 10 pF (Figure 2)				
	Logical "0" or Logical "1"	$V_{CC} = 5V$, $R_L = 10k$		80	200	ns
	into High Impedance State	$V_{CC} = 10V$, $C_L = 10 pF65150 ns$				
		V _{CC} = 15V		50	110	ns
t _{H0} , t _{H1}	Propagation Delay Time from	R _L = 10k, C _L = 50 pF (Figure 2)				
	High Impedance State to a	$V_{CC} = 5V, R_L = 10k$		100	80 60 200	ns
	Logical "0" or Logical "1"	$V_{CC} = 10V, C_L = 50 pF$		55	125	ns
		V _{CC} = 15V		40	90	ns
C _{IN}	Input Capacitance	Any Input (Note 4)		5	7.5	pF
C _{OUT}	3-STATE Output Capacitance	Any Output (Note 4)		10		pF

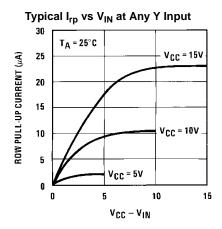
Note 3: AC Parameters are guaranteed by DC correlated testing.

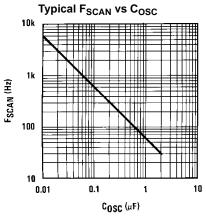
Note 4: Capacitance is guaranteed by periodic testing.

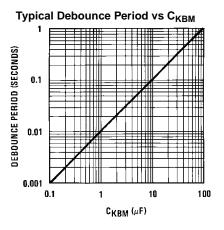



Switching Time Waveforms

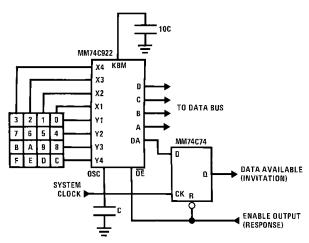
T1 \approx T2 \approx RC, T3 \approx 0.7 RC, where R \approx 10k and C is external capacitor at KBM input.


FIGURE 1.

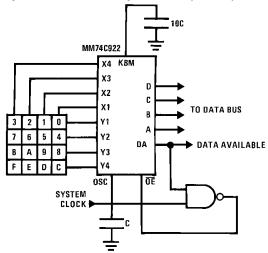




Typical Performance Characteristics

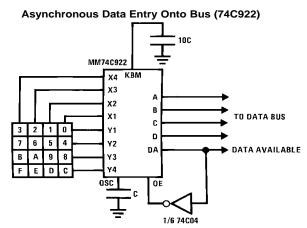


Typical R_{on} vs V_{OUT} at Any X Output V_{CC} = 3V T_A = 25°C COLUMN OUTPUT IMPEDANCE $(k\Omega)$ 3.5 3 2.5 2 1.5 10V 0.5 150 0 10 15 V_{OUT} (V)


Typical Applications

Synchronous Handshake (74C922)

The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz


Synchronous Data Entry Onto Bus (74C922)

Outputs are enabled when valid entry is made and go into 3-STATE when key is released.

The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz

Outputs are in 3-STATE until key is pressed, then data is placed on bus. When key is released, outputs return to 3-STATE.

MM74C922 v_{cc} КВМ Х2 Х3 Χ4 DATA AVAILABLE Y1 4 6 7 Y2 8 9 10 11 Y3 TO DATA 14 15 BUS 18 19 23 20 21 22 26 27 24 25 29 30 31 MM74C20 100 kΩ

Expansion to 32 Key Encoder (74C922)

Theory of Operation

The 74C922/74C923 Keyboard Encoders implement all the logic necessary to interface a 16 or 20 SPST key switch matrix to a digital system. The encoder will convert a key switch closer to a 4(74C922) or 5(74C923) bit nibble. The designer can control both the keyboard scan rate and the key debounce period by altering the oscillator capacitor, C_{OSE}, and the key bounce mask capacitor, C _{MSK}. Thus, the 74C922/74C923's performance can be optimized for many keyboards.

The keyboard encoders connect to a switch matrix that is 4 rows by 4 columns (74C922) or 5 rows by 4 columns (74C923). When no keys are depressed, the row inputs are pulled high by internal pull-ups and the column outputs sequentially output a logic "0". These outputs are open drain and are therefore low for 25% of the time and otherwise off. The column scan rate is controlled by the oscillator input, which consists of a Schmitt trigger oscillator, a 2-bit counter, and a 2-4-bit decoder.

When a key is depressed, key 0, for example, nothing will happen when the X1 input is off, since Y1 will remain high. When the X1 column is scanned, X1 goes low and Y1 will go low. This disables the counter and keeps X1 low. Y1

going low also initiates the key bounce circuit timing and locks out the other Y inputs. The key code to be output is a combination of the frozen counter value and the decoded Y inputs. Once the key bounce circuit times out, the data is latched, and the Data Available (DAV) output goes high.

If, during the key closure the switch bounces, Y1 input will go high again, restarting the scan and resetting the key bounce circuitry. The key may bounce several times, but as soon as the switch stays low for a debounce period, the closure is assumed valid and the data is latched.

A key may also bounce when it is released. To ensure that the encoder does not recognize this bounce as another key closure, the debounce circuit must time out before another closure is recognized.

The two-key roll-over feature can be illustrated by assuming a key is depressed, and then a second key is depressed. Since all scanning has stopped, and all other Y inputs are disabled, the second key is not recognized until the first key is lifted and the key bounce circuitry has reset.

The output latches feed 3-STATE, which is enabled when the Output Enable (\overline{OE}) input is taken low.