

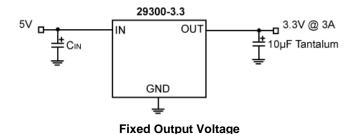
3A Low-Voltage Low-Dropout Regulator

General Description

The LM29300/29301/29302/29303 are high current, high accuracy, low-dropout voltage regulators. these regulators feature 350mV to 425mV (full load) typical dropout voltages and very low ground current. Designed for high current loads, these devices also find applications in lower current, extremely low dropout-critical systems, where their tiny dropout voltage and ground current values are important attributes.

The LM29300/29301/29302/29303 are fully protected against overcurrent faults, reversed input polarity, reversed lead insertion, overtemperature operation, and positive and negative transient voltage spikes. Five pin fixed voltage versions feature logic level ON/OFF control and an error flag which signals whenever the output falls out of regulation. Flagged states include low input voltage (dropout), output current limit, overtemperature shutdown, and extremely high voltage spikes on the input.

On the LM29301 and LM29302, the ENABLE pin may be tied to VIN if it is not required for ON/OFF control. The LM29300 are available in 3-pin and 5-pin TO-220 and surface mount TO-263 (D²Pak) packages.


Features

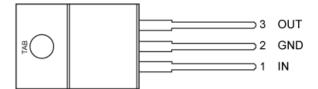
- High current capability:
 LM29300/29301/29302/29303.....3A
- Low-dropout voltage
- Low ground current
- Accurate 1% guaranteed tolerance
- Extremely fast transient response
- Reverse-battery and "Load Dump" protection
- Zero-current shutdown mode (5-pin versions)
- Error flag signals output out-of-regulation (5-pin versions)
- Also characterized for smaller loads with industry-leading performance specifications
- Fixed voltage and adjustable versions

Applications

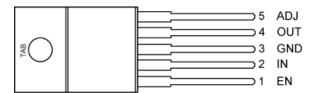
- · Battery-powered equipment
- High-efficiency "Green" computer systems
- Automotive electronics
- High-efficiency linear lower supplies
- High-efficiency lost-regulator for switching supply

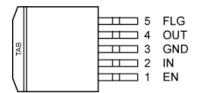
Typical Application**

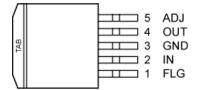
Ordering Information

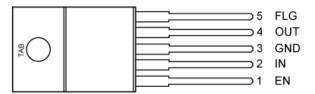

Part Number		Junction Temperature	Voltoge	Current	Dookogo	
Standard	RoHS Compliant ⁽²⁾	Range ⁽¹⁾	Voltage	Current	Package	
LM29300-3.3BU	LM29300-3.3WU (2)	-40°C to +125°C	3.3	3.0A	3-Pin TO-263	
LM29300-5.0BT	LM29300-5.0WT (2)	-40°C to +125°C	5	3.0A	3-Pin TO-220	
LM29300-5.0BU	LM29300-5.0WU (2)	-40°C to +125°C	5	3.0A	3-Pin TO-263	
LM29300-12BT	LM29300-12WT (2)	-40°C to +125°C	12	3.0A	3-Pin TO-220	
LM29300-12BU	LM29300-12WU (2)	-40°C to +125°C	12	3.0A	3-Pin TO-263	
LM29301-3.3BT	LM29301-3.3WT (2)	-40°C to +125°C	3.3	3.0A	5-Pin TO-220	
LM29301-3.3BU	LM29301-3.3WU (2)	-40°C to +125°C	3.3	3.0A	5-Pin TO-263	
LM29301-5.0BT	LM29301-5.0WT (2)	-40°C to +125°C	5	3.0A	5-Pin TO-220	
LM29301-5.0BU	LM29301-5.0WU (2)	-40°C to +125°C	5	3.0A	5-Pin TO-263	
LM29301-12BT	LM29301-12WT (2)	-40°C to +125°C	12	3.0A	5-Pin TO-220	
LM29301-12BU	LM29301-12WU (2)	-40°C to +125°C	12	3.0A	5-Pin TO-263	
LM29302BT	LM29302WT (2)	-40°C to +125°C	Adjustable	3.0A	5-Pin TO-220	
LM29302BU	LM29302WU (2)	-40°C to +125°C	Adjustable	3.0A	5-Pin TO-263	
LM29303BT	LM29303WT (2)	-40°C to +125°C	Adjustable	3.0A	5-Pin TO-220	
LM29303BU	LM29303WU (2)	-40°C to +125°C	Adjustable	3.0A	5-Pin TO-263	

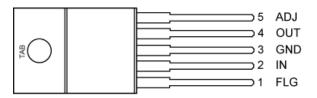
Notes:

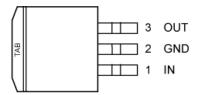

- 1. Junction temperature.
- 2. RoHS compliant with 'high-melting solder' exemption.
- 3. Special Order; please contact factory for availability.

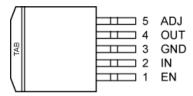

Pin Configuration


3-Pin TO-220 (T) LM29300


5-Pin TO-220 Adjustable Voltage (T) LM29302


5-Pin TO-263 (D²Pak) Fixed Voltage (U) LM29301


5-Pin TO-263 (D²Pak) Adjustable with Flag (U) LM29303


5-Pin TO-220 Fixed Voltage (T) LM29301

5-Pin TO-220 Adjustable with Flag (T) LM29303

3-Pin TO-263 (D²Pak) (UT) LM29300

5-Pin TO-263 (D²Pak) Adjustable Voltage (U) LM29302

Pin Description

Pin Number TO-220 TO-263	Pin Name
1	INPUT: Supplies the current to the output power device.
2	GND: TAB is also connected internally to the IC's ground on D-PAK.
3	OUTPUT: The regulator output voltage.

Pin Description

Pin Number Fixed TO-220 TO-263	Pin Number Adjustable T O - 2 2 0 TO-263	Pin Number Adj. with Flag TO-220 TO-263	Pin Name
1	1	_	ENABLE: CMOS compatible control input. Logic high = enable, logic low = shutdown.
2	2	2	INPUT: Supplies the current to the output power device
3, TAB	3, TAB	3, TAB	GND: TAB is also connected internally to the IC's ground on D-PAK.
4	4	4	OUTPUT: The regulator output voltage
_	5	5	ADJUST: Adjustable regulator feedback input that connects to the resistor voltage divider that is placed from OUTPUT to GND in order to set the output voltage.
5	_	1	FLAG: Active low error flag output signal that indicates an output fault condition

LM29300/29301/29302

Absolute Maximum Ratings⁽¹⁾

Input Supply Voltage $(V_{IN})^{(1)}$	20V to +60V
Enable Input Voltage (V _{EN})	0.3V to V _{IN}
Lead Temperature (soldering, 5sec.)	260°C
Power Dissipation	Internally Limited
Storage Temperature Range	65°C to +150°C
ESD Rating.	Note 3

Operating Ratings⁽²⁾

40°C to +125°C
26V
2°C/W
2°C/W

Electrical Characteristics(4, 11)

V_{IN} = V_{OUT} + 1V; I_{OUT} = 10mA; T_J = 25°C. **Bold** values indicate −40°C ≤ T_J ≤ +125°C, unless noted.

Parameter	Condition	Min.	Тур.	Max.	Units
Output Valtage	I _{OUT} = 10mA	-1		1	- %
Output Voltage	$10\text{mA} \le I_{\text{OUT}} \le I_{\text{FL}}, (V_{\text{OUT}} + 1V) \le V_{\text{IN}} \le 26V$	-2		2	70
Line Regulation	$I_{OUT} = 10 \text{mA}, (V_{OUT} + 1 \text{V}) \le V_{IN} \le 26 \text{V}$		0.06	0.5	%
Load Regulation	$V_{IN} = V_{OUT} + 1V$, $10mA \le I_{OUT} \le 1.5A$ (8)		0.2	1	%
$\frac{\Delta V}{\Delta T}$ o	Output Voltage ⁽⁸⁾ Temperature Coefficient.		20	100	ppm/°C
Dropout Voltage	$\Delta V_{OUT} = -1\%^{(6)}$ LM29300 $I_{OUT} = 100$ mA $I_{OUT} = 1.5$ A $I_{OUT} = 3$ A I_{OUT}		80 250 370	175 600	mV

Notes:

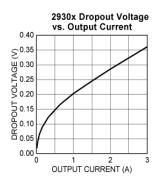
- Maximum positive supply voltage of 60V must be of limited duration (<100msec) and duty cycle (≤1%). The maximum continuous supply voltage is 26V. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- 3. Devices are ESD sensitive. Handling precautions recommended.
- 4. Specification for packaged product only.
- 5. Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its normal value with V_{OUT} + 1V applied to V_{IN}.
- V_{IN} = V_{OUT (nominal)} + 1V. For example, use V_{IN} = 4.3V for a 3.3V regulator or use 6V for a 5V regulator. Employ pulse-testing procedures to pin current.
- 7. Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current plus the ground pin current
- 8. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
- 9. Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a200mA load pulse at VIN = 20V (a 4W pulse) for T = 10ms.
- 10. Comparator thresholds are expressed in terms of a voltage differential at the Adjust terminal below the nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{OUT}/V_{REF} = (R1 + R2)/R2. For example, at a programmed output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95mV x 5V/1.240V = 384mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.7% guaranteed.
- 11. $V_{EN} \le 0.8V$ and $V_{IN} \le 26V$, $V_{OUT} = 0$.
- 12. When used in dual supply systems where the regulator load is returned to a negative supply, the output voltage must be diode clamped to ground.

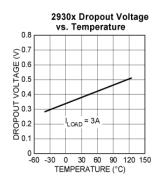
Electrical Characteristics^(4, 12) (Continued)

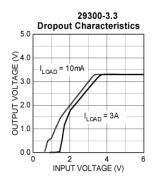
 $V_{IN} = V_{OUT} + 1V$; $I_{OUT} = 10$ mA; $T_J = 25$ °C. **Bold** values indicate -40°C $\leq T_J \leq +125$ °C, unless noted.

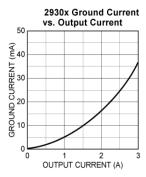
Parameter	Condition		Min.	Тур.	Max.	Units
Ground Current	LM29300 Note 8	$I_{OUT} = 1.5A$, $V_{IN} = V_{OUT} + 1V$ $I_{OUT} = 3A$		10 37	35	mA
I _{GRNDDO} Ground Pin Current at Dropout	V _{IN} = 0.5V less than LM29300	specified V _{OUT} × I _{OUT} = 10mA		1.7		mA
Current Limit	LM29300	$V_{OUT} = 0V^{(7)}$		4.5	5.0	А
e _n , Output Noise Voltage (10Hz to 100kHz) I _L = 100mA	C _L = 10μF C _L = 33μF			400 260		μV (rms)

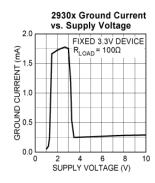
Reference – LM29302/293	303				
Reference Voltage		1.228 1.215	1.240	1.252 1.265	V
Reference Voltage		1.203		1.277	V
Adjust Pin Bias Current			40	80 120	nA
Reference Voltage Temperature Coefficient	Note 9		20		ppm/°C
Adjust Pin Bias Current Temperature Coefficient			0.1		nA/°C
Flag Output (Error Comp	arator) – LM29301/29303	·			
Output Leakage Current	V _{OH} = 26V		0.01	1.00 2.00	μΑ
Output Low Voltage	Device set for 5V, $V_{IN} = 4.5V$ $I_{OL} = 250\mu A$		220	300 400	mV
Upper Threshold Voltage	Device set for 5V (10)	40 25	60		mV
Lower Threshold Voltage	Device set for 5V (10)		75	95 140	mV
Hysteresis	Device set for 5V (10)		15		mV

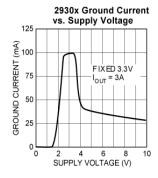

Electrical Characteristics^(4, 12) (Continued)

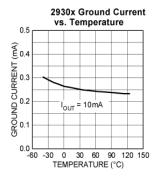

 $V_{IN} = V_{OUT} + 1V$; $I_{OUT} = 10$ mA; $T_J = 25$ °C. **Bold** values indicate -40°C $\leq T_J \leq +125$ °C, unless noted.

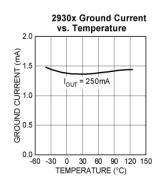

Parameter	Condition	Min.	Тур.	Max.	Units
ENABLE Input – LM293	01/29302	•	•	•	
Input Logic Voltage Low (OFF) High (ON)		2.4		0.8	V
Enable Pin	V _{EN} = 26V		100	600 750	
Input Current	V _{EN} = 0.8V	0.7		2 4	μΑ
Regulator Output Current in Shutdown	Note 11		10	500	μA

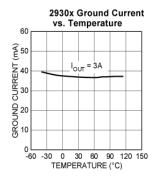


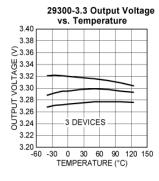

Typical Characteristics (LM2930x)

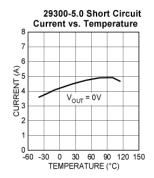


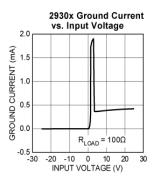


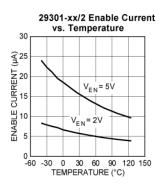


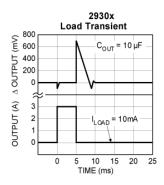


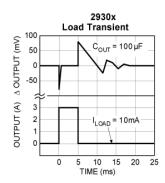


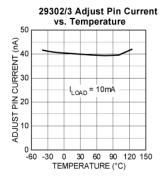


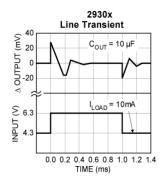


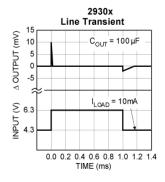


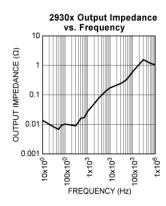


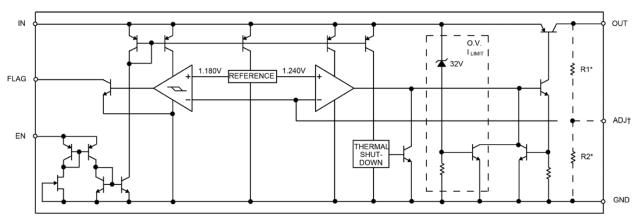





Typical Characteristics (LM2930x) (Continued)







Functional Diagram

^{*} FEEDBACK NETWORK IN FIXED VERSIONS ONLY † ADJUSTABLE VERSION ONLY

Application Information

The LM29300 are high-performance low-dropout voltage regulators suitable for all moderate to high-current voltage regulator applications. Their 350mV to 425mV typical dropout voltage at full load make them especially valuable in battery powered systems and as high efficiency noise filters in "post-regulator" applications. Unlike older NPN-pass transistor designs, where the minimum dropout voltage is limited by the base-emitter voltage drop and collector-emitter saturation voltage, dropout performance of the PNP output of these devices is limited merely by the low V_{CE} saturation voltage.

A trade-off for the low-dropout voltage is a varying base driver requirement. But Micrel's Super ßeta PNP® process reduces this drive requirement to merely 1% of the load current.

The LM29300 family of regulators are fully protected from damage due to fault conditions. Current limiting is provided. This limiting is linear; output current under overload conditions is constant. Thermal shutdown disables the device when the die temperature exceeds maximum safe operating temperature. Line transient protection allows device (and load) survival even when the input voltage spikes between -20V and +60V. When the input voltage exceeds approximately 32V, the over voltage sensor disables the regulator. The output structure of these regulators allows voltages in excess of the desired output voltage to be applied without reverse current flow. LM29301 and LM29302 versions offer a logic level ON/OFF control: when disabled, the devices draw nearly zero current.

An additional feature of this regulator family is a common pinout: a design's current requirement may change up or down yet use the same board layout, as all of these regulators have identical pinouts.

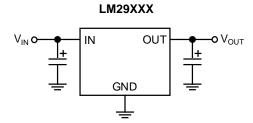


Figure 3. Linear Regulators Require Only Two Capacitors for Operation

Thermal Design

Linear regulators are simple to use. The most complicated design parameters to consider are thermal characteristics. Thermal design requires the following application-specific parameters:

- Maximum ambient temperature, T_A
- Output Current, I_{OUT}
- Output Voltage, V_{OUT}
- Input Voltage, V_{IN}

First, we calculate the power dissipation of the regulator from these numbers and the device parameters from this datasheet.

$$P_D = I_{OUT} (1.01 V_{IN} - V_{OUT})$$
 Eq. 1

where the ground current is approximated by 1% of I_{OUT} . Then the heat sink thermal resistance is determined with Equation 2:

$$\theta_{SA} = \frac{T_{JMAX} - T_A}{P_D} - (\theta_{JC} + \theta_{CS})$$
 Eq. 2

where $T_{JMAX} \le 125$ °C and θ_{CS} is between 0 and 2°C/W.

The heat sink may be significantly reduced in applications where the minimum input voltage is known and is large compared with the dropout voltage. Use a series input resistor to drop excessive voltage and distribute the heat between this resistor and the regulator. The low-dropout properties of Micrel Super ßeta PNP® regulators allow very significant reductions in regulator power dissipation and the associated heat sink without compromising performance. When this technique is employed, a capacitor of at least 0.1µF is needed directly between the input and regulator ground.

Please refer to Application Note 8 and Application Hint 17 for further details and examples on thermal design and heat sink specification.

LM29300/29301/29302

For example, given an expected maximum ambient temperature (T_A) of 75°C with $V_{IN}=3.3V$, $V_{OUT}=2.5V$, and $I_{OUT}=1.5A$, first calculate the expected P_D using Equation 3:

$$P_D = (3.3V - 2.5V)1.5A - (3.3V)(0.016A) = 1.1472W$$

Eq. 3

Next, calcualte the junction temperature for the expected power dissipation.

$$T_J = (\theta_{JA} \times P_D) + T_A = (56^{\circ}C/W \times 1.1472W) + 75^{\circ}C$$

= 139.24°C

Eq. 4

Now determine the maximum power dissipation allowed that would not exceed the IC's maximum junction temperature (125°C) without the useof a heat sink by:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$$

= (125°C-75°C)/(56°C/W) = 0.893W

Eq. 5

Capacitor Requirements

For stability and minimum output noise, a capacitor on the regulator output is necessary. The value of this capacitor is dependent upon the output current; lower currents allow smaller capacitors. The LM29300 regulators are stable with the following minimum capacitor values at full load, as noted in Table 1:

Device	Full Load Capacitor
LM29300	10μF

Table 1. Minimum Capacitor Values at Full Load

This capacitor need not be an expensive low ESR type: aluminum electrolytics are adequate. In fact, extremely low ESR capacitors may contribute to instability. Tantalum capacitors are recommended for systems where fast load transient response is important.

Where the regulator is powered from a source with high AC impedance, a 0.1µF capacitor connected between Input and GND is recommended. This capacitor should have good characteristics to above 250kHz.

Device

	Minimum Load
LM29300	7mA

Table 2. Minimum Load Currents

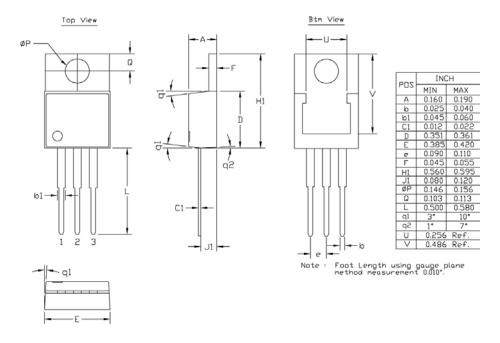
Adjustable Regulator Design

The adjustable regulator versions, LM29302 and LM29303, allow programming the output voltage anywhere between 1.25V and the 25V. Two resistors are used. The resistor values are calculated by Equation 6:

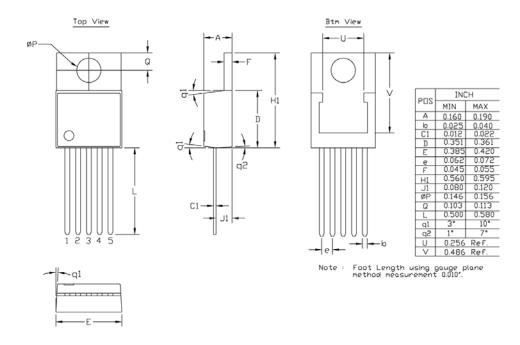
$$R_1 = R_2 \times \left(\frac{V_{OUT}}{1.240} - 1 \right)$$
 Eq. 6

where V_{OUT} is the desired output voltage. Figure 4 shows component definition. Applications with widely varying load currents may scale the resistors to draw the minimum load current required for proper operation (see "Minimum Load Current" sub-section).

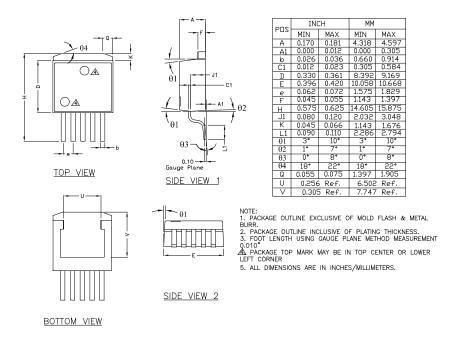
Error Flag

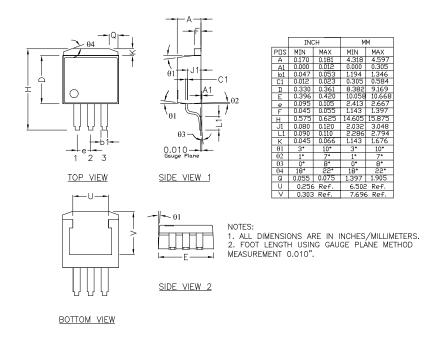

LM29301 and LM29303 versions feature an Error Flag, which looks at the output voltage and signals an error condition when this voltage drops 5% below its expected value. The error flag is an open-collector output that pulls low under fault conditions. It may sink 10mA. Low output voltage signifies a number of possible problems, including an overcurrent fault (the device is in current limit) and low input voltage. The flag output is inoperative during overtemperature shutdown conditions.

Enable Input


LM29301 and LM29302 versions feature an enable (EN) input that allows ON/OFF control of the device. Special design allows "zero" current drain when the device is disabled—only microamperes of leakage current flows. The EN input has TTL/CMOS compatible thresholds for simple interfacing with logic, or may be directly tied to $\leq\!30\text{V}$. Enabling the regulator requires approximately 20µA of current.

Package Information⁽¹⁾


3-Pin TO-220 (T)


5-Pin TO-220 (T)

Package Information⁽¹⁾ (Continued)

5-Pin TO-263 (U)

3-Pin TO-263 (U)