

# 800mA LOW DROPOUT VOLTAGE REGULATOR

#### **FEATURES**

- Three Terminal Adjustable or Fixed Voltages\*
   1.5V, 1.8V, 2.5V, 2.85V, 3.3V and 5.0V
- Output Current of 800mA
- Operates Down to 1V Dropout
- Line Regulation: 0.2% Max.
- Load Regulation: 0.4% Max.

#### APPLICATIONS

- High Efficiency Linear Regulators
- Post Regulators for Switching Supplies
- 5V to 3.3V Linear Regulator
- Battery Chargers
- Active SCSI Terminators
- Power Management for Notebook
- Battery Powered Instrumentation

### GENERAL DESCRIPTION

The AMS1117 series of adjustable and fixed voltage regulators are designed to provide 800mA output current and to operate down to 1V input-to-output differential. The dropout voltage of the device is guaranteed maximum 1.3V at maximum output current, decreasing at lower load currents.

On-chip trimming adjusts the reference voltage to 1%. Current limit is also trimmed, minimizing the stress under overload conditions on both the regulator and power source circuitry.

The AMS1117 devices are pin compatible with other three-terminal SCSI regulators and are offered in the low profile surface mount SOT-223 package.

# **ORDERING INFORMATION:**

SOT-223 Top View



## PIN CONNECTIONS

FIXED VERSION ADJUSTABLE VERSION

1- Ground 1- Adjust 2- V<sub>OUT</sub> 2- V<sub>OUT</sub> 3- V<sub>IN</sub> 3- V<sub>IN</sub>



# 800mA LOW DROPOUT VOLTAGE REGULATOR

### ABSOLUTE MAXIMUM RATINGS (Note 1)

Power Dissipation Internally limited Input Voltage 15V

Operating Junction Temperature

Control Section 0°C to 125°C
Power Transistor 0°C to 150°C
Storage temperature -65°C to +150°C

Soldering information

Lead Temperature (10 sec)

300°C

Thermal Resistance

SOT-223 package

 $\phi_{JA} = 90^{\circ} \text{C/W*}$ 

\* With package soldering to copper area over backside ground plane or internal power plane  $\phi$  <sub>JA</sub> can vary from 46°C/W to >90°C/W depending on mounting technique and the size of the copper area.

# **ELECTRICAL CHARACTERISTICS**

Electrical Characteristics at  $I_{OUT} = 0$  mA, and  $T_J = +25$ °C unless otherwise specified.

| Parameter                       | Device       | Conditions                                                                                                                   | Min                   | Тур                   | Max                   | Units    |
|---------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|----------|
| Reference Voltage<br>(Note 2)   | AMS1117      | $I_{OUT} = 10 \text{ mA}$<br>$10\text{mA} \le I_{OUT} \le 800\text{mA}, \ 1.5\text{V} \le (V_{IN} - V_{OUT}) \le 12\text{V}$ | 1.238<br><b>1.225</b> | 1.250<br><b>1.250</b> | 1.262<br><b>1.270</b> | V<br>V   |
| Output Voltage<br>(Note 2)      | AMS1117-1.5  | $0 \le I_{OUT} \le 800 \text{mA}$ , $3.0 \text{V} \le V_{IN} \le 12 \text{V}$                                                | 1.485<br><b>1.476</b> | 1.500<br><b>1.500</b> | 1.515<br><b>1.524</b> | V<br>V   |
|                                 | AMS1117-1.8  | $0 \le I_{OUT} \le 800 \text{mA}$ , $3.3 \text{V} \le V_{IN} \le 12 \text{V}$                                                | 1.782<br><b>1.773</b> | 1.800<br><b>1.800</b> | 1.818<br><b>1.827</b> | V<br>V   |
|                                 | AMS1117-2.5  | $0 \le I_{OUT} \le 800 \text{mA}$ , $4.0 \text{V} \le V_{IN} \le 12 \text{V}$                                                | 2.475<br><b>2.460</b> | 2.500<br><b>2.500</b> | 2.525<br><b>2.560</b> | V<br>V   |
|                                 | AMS1117-2.85 | $0 \le I_{OUT} \le 800 \text{mA} , 4.35 \text{V} \le V_{IN} \le 12 \text{V}$                                                 | 2.82<br><b>2.79</b>   | 2.850<br><b>2.850</b> | 2.88<br><b>2.91</b>   | V<br>V   |
|                                 | AMS1117-3.3  | $0 \le I_{OUT} \le 800 \text{mA}$ , $4.75 \text{V} \le V_{IN} \le 12 \text{V}$                                               | 3.267<br><b>3.235</b> | 3.300<br><b>3.300</b> | 3.333<br><b>3.365</b> | V<br>V   |
|                                 | AMS1117-5.0  | $0 \le I_{OUT} \le 800 \text{mA}$ , $6.5 \text{V} \le V_{IN} \le 12 \text{V}$                                                | 4.950<br><b>4.900</b> | 5.000<br><b>5.000</b> | 5.050<br><b>5.100</b> | V<br>V   |
| Line Regulation                 | AMS1117      | $I_{LOAD} = 10 \text{ mA}, 1.5 \text{V} \le (V_{IN} - V_{OUT}) \le 12 \text{V}$                                              |                       | 0.015<br><b>0.035</b> | 0.2<br><b>0.2</b>     | %<br>%   |
|                                 | AMS1117-1.5  | $3.0V \le V_{IN} \le 12V$                                                                                                    |                       | 0.3<br><b>0.6</b>     | 5<br><b>6</b>         | mV<br>mV |
|                                 | AMS1117-1.8  | $3.3V \le V_{IN} \le 12V$                                                                                                    |                       | 0.3<br><b>0.6</b>     | 5<br><b>6</b>         | mV<br>mV |
|                                 | AMS1117-2.5  | $4.0V \le V_{\rm IN} \le 12V$                                                                                                |                       | 0.3<br><b>0.6</b>     | 6<br><b>6</b>         | mV<br>mV |
|                                 | AMS1117-2.85 | $4.35 \text{V} \le \text{V}_{\text{IN}} \le 12 \text{V}$                                                                     |                       | 0.3<br><b>0.6</b>     | 6<br><b>6</b>         | mV<br>mV |
|                                 | AMS1117-3.3  | $4.75 \text{V} \le \text{V}_{\text{IN}} \le 12 \text{V}$                                                                     |                       | 0.5<br><b>1.0</b>     | 10<br><b>10</b>       | mV<br>mV |
|                                 | AMS1117-5.0  | $6.5V \le V_{\rm IN} \le 12V$                                                                                                |                       | 0.5<br><b>1.0</b>     | 10<br><b>10</b>       | mV<br>mV |
| Load Regulation<br>(Notes 2, 3) | AMS1117      | $(V_{IN} - V_{OUT}) = 3V, 10mA \le I_{OUT} \le 800mA$                                                                        |                       | 0.1<br><b>0.2</b>     | 0.3<br><b>0.4</b>     | %<br>%   |
|                                 | AMS1117-1.5  | $V_{IN} = 5V, 0 \le I_{OUT} \le 800 \text{mA}$                                                                               |                       | 3<br><b>6</b>         | 10<br><b>20</b>       | mV<br>mV |
|                                 | AMS1117-1.8  | $V_{\rm IN} = 5V,  0 \le I_{\rm OUT} \le 800 mA$                                                                             |                       | 3<br><b>6</b>         | 10<br><b>20</b>       | mV<br>mV |
|                                 | AMS1117-2.5  | $V_{IN} = 5V, 0 \le I_{OUT} \le 800 \text{mA}$                                                                               |                       | 3 6                   | 12<br><b>20</b>       | mV<br>mV |



# 800mA LOW DROPOUT VOLTAGE REGULATOR

# **ELECTRICAL CHARACTERISTICS**

Electrical Characteristics at  $I_{OUT} = 0$  mA, and  $T_J = +25^{\circ}C$  unless otherwise specified.

| Parameter                                             | Device                                    | Conditions                                                                                                                                                            | Min | Тур            | Max             | Units    |
|-------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|-----------------|----------|
| Load Regulation<br>(Notes 2, 3)                       | AMS1117-2.85                              | $V_{IN} = 5V, 0 \le I_{OUT} \le 800 \text{mA}$                                                                                                                        |     | 3<br><b>6</b>  | 12<br><b>20</b> | mV<br>mV |
|                                                       | AMS1117-3.3                               | $V_{IN} = 5V, 0 \le I_{OUT} \le 800 \text{mA}$                                                                                                                        |     | 3<br><b>7</b>  | 15<br><b>25</b> | mV<br>mV |
|                                                       | AMS1117-5.0                               | $V_{\rm IN} = 8V, 0 \le I_{\rm OUT} \le 800 \rm mA$                                                                                                                   |     | 5<br><b>10</b> | 20<br><b>35</b> | mV<br>mV |
| Dropout Voltage (V <sub>IN</sub> - V <sub>OUT</sub> ) | AMS1117-1.5/-1.8/-2.5/-<br>2.85/-3.3/-5.0 | $\Delta V_{OUT}$ , $\Delta V_{REF} = 1\%$ , $I_{OUT} = 800$ mA (Note 4)                                                                                               |     | 1.1            | 1.3             | V        |
| Current Limit                                         | AMS1117-1.5/-1.8/-2.5/-<br>2.85/-3.3/-5.0 | $(V_{IN} - V_{OUT}) = 5V$ TJ = 25°C                                                                                                                                   | 900 | 1,100          | 1,500           | mA       |
| Minimum Load<br>Current                               | AMS1117                                   | $(V_{IN} - V_{OUT}) = 12V \text{ (Note 5)}$                                                                                                                           |     | 5              | 10              | mA       |
| Quiescent Current                                     | AMS1117-1.5/-1.8/-2.5/-<br>2.85/-3.3/-5.0 | $V_{IN} \le 12V$                                                                                                                                                      |     | 5              | 10              | mA       |
| Ripple Rejection                                      | AMS1117                                   | $\begin{aligned} f = & 120 Hz \text{ , } C_{OUT} = 22 \mu F \text{ Tantalum, } I_{OUT} = 800 mA, \\ & (V_{IN}\text{-}V_{OUT}) = 3V, C_{ADI} = 10 \mu F \end{aligned}$ | 60  | 75             |                 | dB       |
|                                                       | AMS1117-1.5/-1.8/-2.5/-<br>2.85           | $f$ =120Hz , $C_{OUT}$ = 22 $\mu F$ Tantalum, $I_{OUT}$ = 800mA, $V_{IN}$ = 6V                                                                                        | 60  | 72             |                 | dB       |
|                                                       | AMS1117-3.3                               | $f$ =120Hz , $C_{OUT}$ = 22 $\mu F$ Tantalum, $I_{OUT}$ = 800mA $V_{IN}$ = 6.3 $V$                                                                                    | 60  | 72             |                 | dB       |
|                                                       | AMS1117-5.0                               | $f$ =120Hz , $C_{OUT}$ = 22 $\mu F$ Tantalum, $I_{OUT}$ = 800mA $V_{IN}$ = 8V                                                                                         | 60  | 68             |                 | dB       |
| Thermal Regulation                                    | AMS1117                                   | $T_A = 25^{\circ}C$ , 30ms pulse                                                                                                                                      |     | 0.008          | 0.04            | %W       |
| Adjust Pin Current                                    | AMS1117                                   | $10 \text{mA} \le I_{\text{OUT}} \le 800 \text{mA}$ , $1.5 \text{V} \le (V_{\text{IN}} - V_{\text{OUT}}) \le 12 \text{V}$                                             |     | 55             | 120             | μA<br>μA |
| Adjust Pin Current<br>Change                          | AMS1117                                   | $10\text{mA} \le I_{\text{OUT}} \le 800\text{mA}$ , $1.5\text{V} \le (V_{\text{IN}} - V_{\text{OUT}}) \le 12\text{V}$                                                 |     | 0.2            | 5               | μΑ       |
| Temperature Stability                                 |                                           |                                                                                                                                                                       |     | 0.5            |                 | %        |
| Long Term Stability                                   |                                           | T <sub>A</sub> =125°C, 1000Hrs                                                                                                                                        |     | 0.3            | 1               | %        |
| RMS Output Noise<br>(% of V <sub>OUT</sub> )          |                                           | $T_A = 25^{\circ}\text{C}$ , $10\text{Hz} \le f \le 10\text{kHz}$                                                                                                     |     | 0.003          |                 | %        |
| Thermal Resistance<br>Junction-to-Case                |                                           |                                                                                                                                                                       |     |                | 15              | °C/W     |



### 800mA LOW DROPOUT VOLTAGE REGULATOR

### **APPLICATION HINTS**

The AMS1117 series of adjustable and fixed regulators are easy to use and are protected against short circuit and thermal overloads. Thermal protection circuitry will shut-down the regulator should the junction temperature exceed 165°C at the sense point.

Pin compatible with older three terminal adjustable regulators, these devices offer the advantage of a lower dropout voltage, more precise reference tolerance and improved reference stability with temperature.

### Stability

The circuit design used in the AMS1117 series requires the use of an output capacitor as part of the device frequency compensation. The addition of  $22\mu F$  solid tantalum on the output will ensure stability for all operating conditions.

When the adjustment terminal is bypassed with a capacitor to improve the ripple rejection, the requirement for an output capacitor increases. The value of  $22\mu F$  tantalum covers all cases of bypassing the adjustment terminal. Without bypassing the adjustment terminal smaller capacitors can be used with equally good results.

To ensure good transient response with heavy load current changes capacitor values on the order of  $100\mu F$  are used in the output of many regulators. To further improve stability and transient response of these devices larger values of output capacitor can be used.

### **Protection Diodes**

Unlike older regulators, the AMS1117 family does not need any protection diodes between the adjustment pin and the output and from the output to the input to prevent over-stressing the die. Internal resistors are limiting the internal current paths on the AMS1117 adjustment pin, therefore even with capacitors on the adjustment pin no protection diode is needed to ensure device safety under short-circuit conditions.

Diodes between the input and output are not usually needed. Microsecond surge currents of 50A to 100A can be handled by the internal diode between the input and output pins of the device. In normal operations it is difficult to get those values of surge currents even with the use of large output capacitances. If high value output capacitors are used, such as 1000µF to 5000µF and the input pin is instantaneously shorted to ground, damage can occur. A diode from output to input is recommended, when a crowbar circuit at the input of the AMS1117 is used (Figure 1).

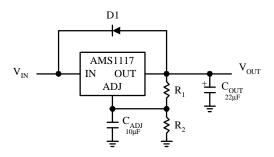



Figure 1.

#### **Output Voltage**

The AMS1117 series develops a 1.25V reference voltage between the output and the adjust terminal. Placing a resistor between these two terminals causes a constant current to flow through R1 and down through R2 to set the overall output voltage. This current is normally the specified minimum load current of 10mA. Because I<sub>ADJ</sub> is very small and constant it represents a small error and it can usually be ignored.

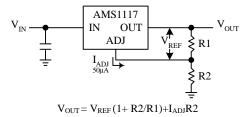
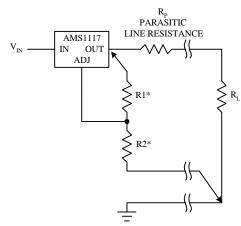



Figure 2. Basic Adjustable Regulator

#### **Load Regulation**

True remote load sensing it is not possible to provide, because the AMS1117 is a three terminal device. The resistance of the wire connecting the regulator to the load will limit the load regulation. The data sheet specification for load regulation is measured at the bottom of the package. Negative side sensing is a true Kelvin connection, with the bottom of the output divider returned to the negative side of the load.

The best load regulation is obtained when the top of the resistor divider R1 is connected directly to the case not to the load. If R1 were connected to the load, the effective resistance between the regulator and the load would be:


$$R_P \ x \ ( \ \underline{R2 + R1} \ )$$
 ,  $R_P = Parasitic \ Line \ Resistance$ 



## 800mA LOW DROPOUT VOLTAGE REGULATOR

#### APPLICATION HINTS

Connected as shown ,  $R_P$  is not multiplied by the divider ratio



\*CONNECT R1 TO CASE CONNECT R2 TO LOAD

Figure 3. Connections for Best Load Regulation

In the case of fixed voltage devices the top of R1 is connected Kelvin internally, and the ground pin can be used for negative side sensing.

#### **Thermal Considerations**

The AMS1117 series have internal power and thermal limiting circuitry designed to protect the device under overload conditions. However maximum junction temperature ratings of 125°C should not be exceeded under continuous normal load conditions.

Careful consideration must be given to all sources of thermal resistance from junction to ambient. For the surface mount package SOT-223 additional heat sources mounted near the device must be considered. The heat dissipation capability of the PC board and its copper traces is used as a heat sink for the device. The thermal resistance from the junction to the tab for the AMS1117 is 15°C/W. Thermal resistance from tab to ambient can be as low as 30°C/W.

The total thermal resistance from junction to ambient can be as low as 45°C/W. This requires a reasonable sized PC board with at least on layer of copper to spread the heat across the board and couple it into the surrounding air.

Experiments have shown that the heat spreading copper layer does not need to be electrically connected to the tab of the device. The PC material can be very effective at transmitting heat between the pad area, attached to the pad of the device, and a ground plane layer either inside or on the opposite side of the board. Although the actual thermal resistance of the PC material is high, the Length/Area ratio of the thermal resistance between layers is small. The data in Table 1, was taken using 1/16" FR-4 board with 1 oz. copper foil, and it can be used as a rough guideline for estimating thermal resistance.

For each application the thermal resistance will be affected by thermal interactions with other components on the board. To determine the actual value some experimentation will be necessary.

The power dissipation of the AMS1117 is equal to:

 $P_D = (V_{IN} - V_{OUT})(I_{OUT})$ 

Maximum junction temperature will be equal to:

 $T_J = T_{A(MAX)} + P_D(Thermal Resistance (junction-to-ambient))$ 

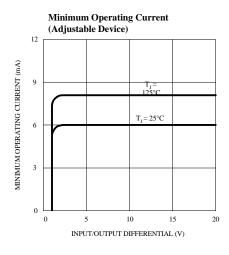
Maximum junction temperature must not exceed 125°C.

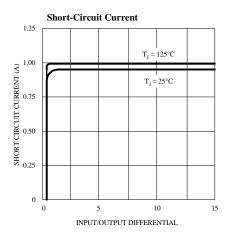
#### Ripple Rejection

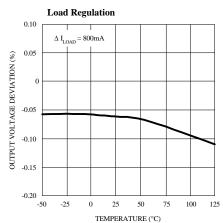
The ripple rejection values are measured with the adjustment pin bypassed. The impedance of the adjust pin capacitor at the ripple frequency should be less than the value of R1 (normally  $100\Omega$  to  $200\Omega)$  for a proper bypassing and ripple rejection approaching the values shown. The size of the required adjust pin capacitor is a function of the input ripple frequency. If R1=100 $\Omega$  at 120Hz the adjust pin capacitor should be >13 $\mu F$ . At 10kHz only 0.16 $\mu F$  is needed.

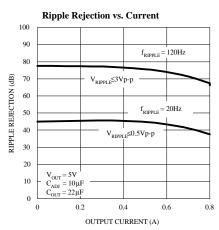
The ripple rejection will be a function of output voltage, in circuits without an adjust pin bypass capacitor. The output ripple will increase directly as a ratio of the output voltage to the reference voltage ( $V_{\rm OUT}\,/\,V_{REF}$ ).

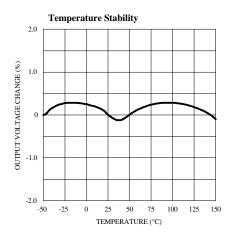
Table 1.


| COPPE       | ER AREA     |             | THERMAL RESISTANCE    |  |
|-------------|-------------|-------------|-----------------------|--|
| TOP SIDE*   | BACK SIDE   | BOARD AREA  | (JUNCTION-TO-AMBIENT) |  |
| 2500 Sq. mm | 2500 Sq. mm | 2500 Sq. mm | 45°C/W                |  |
| 1000 Sq. mm | 2500 Sq. mm | 2500 Sq. mm | 45°C/W                |  |
| 225 Sq. mm  | 2500 Sq. mm | 2500 Sq. mm | 53°C/W                |  |
| 100 Sq. mm  | 2500 Sq. mm | 2500 Sq. mm | 59°C/W                |  |
| 1000 Sq. mm | 1000 Sq. mm | 1000 Sq. mm | 52°C/W                |  |
| 1000 Sq. mm | 0           | 1000 Sq. mm | 55°C/W                |  |


<sup>\*</sup> Tab of device attached to topside copper.





# 800mA LOW DROPOUT VOLTAGE REGULATOR


## TYPICAL PERFORMANCE CHARACTERISTICS

